Το Πρόγραμμα Εκπαίδευσης και Πιστοποίησης AI+ Prompt Engineer™ σας εξοπλίζει με προηγμένες στρατηγικές για τη δημιουργία αποτελεσματικών προτροπών, τη βελτιστοποίηση των αποτελεσμάτων των μοντέλων και την ανάπτυξη καινοτόμων λύσεων τεχνητής νοημοσύνης. Το Πρόγραμμα Πιστοποίησης AI+ Prompt Engineer παρέχει βασικές δεξιότητες και γνώσεις για την κυριαρχία στην τεχνητή νοημοσύνη και τη μηχανική προτροπών. Αυτό το πρόγραμμα καλύπτει θεμελιώδεις έννοιες τεχνητής νοημοσύνης, προηγμένες τεχνικές μηχανικής προτροπών και πρακτικές εφαρμογές, ενδυναμώνοντάς σας να παράγετε αποτελεσματικά αποτελέσματα.
Περιεχόμενο
Module 1: Foundations of Artificial Intelligence (AI) and Prompt Engineering
1.1 Introduction to Artificial Intelligence
1.2 History of AI
1.3 Machine Learning Basics
1.4 Deep Learning and Neural Networks
1.5 Natural Language Processing (NLP)
1.6 Prompt Engineering Fundamentals
Module 2: Principles of Effective Prompting
2.1 Introduction to the Principles of Effective Prompting
2.2 Giving Directions
2.3 Formatting Responses
2.4 Providing Examples
2.5 Evaluating Response Quality
2.6 Dividing Labor
2.7 Applying The Five Principles
2.8 Fixing Failing Prompts
Module 3: Introduction to AI Tools and Models
3.1 Understanding AI Tools and Models
3.2 Deep Dive into ChatGPT
3.3 Exploring GPT-4
3.4 Revolutionizing Art with DALL-E 2
3.5 Introduction to Emerging Tools using GPT
3.6 Specialized AI Models
3.7 Advanced AI Models
3.8 Google AI Innovations
3.9 Comparative Analysis of AI Tools
3.10 Practical Application Scenarios
3.11 Harnessing AI’s Potential
Module 4: Mastering Prompt Engineering Techniques
4.1 Zero-Shot Prompting
4.2 Few-Shot Prompting
4.3 Chain-of-Thought Prompting
4.4 Ensuring Self-Consistency in AI Responses
4.5 Generate Knowledge Prompting
4.6 Prompt Chaining
4.7 Tree of Thoughts: Exploring Multiple Solutions
4.8 Retrieval Augmented Generation
4.9 Graph Prompting and Advanced Data Interpretation
4.10 Application in Practice: Real-Life Scenarios
4.11 Practical Exercises
Module 5: Mastering Image Model Techniques
5.1 Introduction to Image Models
5.2 Understanding Image Generation
5.3 Style Modifiers and Quality Boosters in Image Generation
5.4 Advanced Prompt Engineering in AI Image Generation
5.5 Prompt Rewriting for Image Models
5.6 Image Modification Techniques: Inpainting and Outpainting
5.7 Realistic Image Generation
5.8 Realistic Models and Consistent Characters
5.9 Practical Application of Image Model Techniques
Module 6: Project-Based Learning Session
6.1 Introduction to Project-Based Learning in AI
6.2 Selecting a Project Theme
6.3 Project Planning and Design in AI
6.4 AI Implementation and Prompt Engineering
6.5 Integrating Text and Image Models
6.6 Evaluation and Integration in AI Projects
6.7 Engaging and Effective Project Presentation
6.8 Guided Project Example
Module 7: Ethical Considerations and Future of AI
7.1 Introduction to AI Ethics
7.2 Bias and Fairness in AI Models
7.3 Privacy and Data Security in AI
7.4 The Imperative for Transparency in AI Operations
7.5 Sustainable AI Development: An Imperative for the Future
7.6 Ethical Scenario Analysis in AI: Navigating the Complex Landscape
7.7 Navigating the Complex Landscape of AI Regulations and Governance
7.8 Navigating the Regulatory Landscape: A Guide for AI Practitioners
7.9 Ethical Frameworks and Guidelines in AI Development